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SUMMARY
More than a century of research shows that spaced learning improves long-term memory. However, there
remains debate concerning why that is. A major limitation to resolving theoretical debates is the lack of ev-
idence for how neural representations change as a function of spacing. Here, leveraging a massive-scale 7T
human fMRI dataset, we tracked neural representations and behavioral expressions of memory as partici-
pants viewed thousands of natural scene images that repeated at lags ranging from seconds to many
months. We show that spaced learning increases the similarity of human ventromedial prefrontal cortex rep-
resentations across stimulus encounters and, critically, that these increases parallel and predict the behav-
ioral benefits of spacing. Additionally, we show that these spacing benefits critically depend on remembering
and, in turn, ‘‘re-encoding’’ past experience. Collectively, our findings provide fundamental insight into how
spaced learning influences neural representations and why spacing is beneficial.
INTRODUCTION

One of the most robust and well-documented phenomena in hu-

man memory research is that when repetitions of a stimulus are

spaced over time—as opposed to massed—long-term memory

for that stimulus is improved.1 This spacing effect operates

across a wide variety of memoranda2 and species3 and also

across impressively long timescales.4–7 However, despite the

ubiquity of this effect and its significant implications for memory

in everyday and educational settings, there remains debate con-

cerning why spaced learning improves memory. Why is a

repeated stimulus more effectively encoded when more time

has elapsed since it was previously encoded?

While a number of theoretical accounts of spacing effects

have been advanced,3,6,8 one of the most prominent ideas is

that spaced learning benefits memory by increasing encoding

variability.9–11 By this account, when a stimulus is re-encoun-

tered after a long delay, it is encoded differently than the first

time it was encountered. A more variable representation is

argued to have more ‘‘points of access’’ and, therefore, increase

the likelihood of later retrieval.12 However, if encoding variability

were the only factor, thenmemory would monotonically increase

with greater spacing (the more spacing, the better). In contrast,

studies have shown that as the lag between stimulus repetitions

increases, the benefit of spacing will eventually reverse, produc-

ing an ‘‘inverted U’’-shaped relationship between spacing and

subsequent memory.2,4,6 This non-monotonic pattern is often
Cell Reports 44, 115232, Febru
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only observed when long timescales are considered (spacing

on the order of weeks or months), but it is extremely informative,

at a theoretical level, because it suggests that a second factor

also contributes to spacing effects—a factor that explains dimin-

ished benefits at very long lags. Perhaps the most commonly

advanced second factor is study-phase retrieval.13,14 By this ac-

count, when a stimulus is re-encountered, it triggers retrieval of

the original encounter (benefitting memory), but the benefit of

retrieval is negatively related to lag because forgetting the first

encounter becomes more likely with longer lags. While the com-

bination of encoding variability and study-phase retrieval has

high explanatory power,6,10,12,15–17 a fundamental limitation of

almost all leading theoretical accounts of spacing effects is

that they are not directly informed, or constrained, by experi-

mental evidence of how spacing influences neural representa-

tions. This is particularly glaring in the case of encoding vari-

ability, which makes obvious predictions about the variability

of neural representations over time and the relationship of this

variability to subsequent memory.

The lack of integration of neural evidence with cognitive the-

ories of spacing effects is partly due to the surprisingly limited

number of neuroimaging/electrophysiological studies that have

characterized neural representations as a function of spacing.

Moreover, existing evidence is largely limited to studies that

measure spacing effects over short timescales (a single experi-

mental session), making it difficult to test ideas from cognitive

theories that are specifically motivated by behavioral spacing
ary 25, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
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effects over long timescales. A primary issue is that it is difficult,

or at least resource intensive, to measure neural representations

across days, weeks, or months. That said, there is recent evi-

dence that, at least at short timescales, neural representations

of repeated events may actually be more similar with greater

spacing18,19—a finding not predicted or easily explained by an

encoding-variability account. However, it is currently unclear

why neural representations would become more similar with

spacing, how neural similarity might change over longer time-

scales, and what neural similarity ultimately tells us about why

spaced learning is beneficial.

Here, we measured neural representations and behavioral ex-

pressions of memory for stimuli repeated over long timescales

with the goal of integrating neural and behavioral measures to

inform theories of spacing effects. To this end, we leveraged

the Natural Scenes Dataset20—an unprecedented dataset that

combines behavioral measures of memory and 7T fMRI for hu-

man participants that studied stimuli distributed across 30–40

experimental sessions over an 8–10 month window (Figures 1A

and 1B). Across these sessions, participants viewed 9,209–

10,000 natural scene images presented up to three times each

(E1, E2, E3) and made recognition memory decisions at each

encounter (continuous recognition task). This yielded a remark-

ably wide range of lags (spacing) between the first two expo-

sures, from 4 s up to 302 days (Figure 1C). Of central interest

here was how spacing between the first two exposures with a

stimulus (E1-E2 lag) influenced corresponding neural similarity

(E1-E2 similarity) and whether neural measures of similarity par-

allel and predict behavioral benefits of spacing (recognition

memory at E3). We focused our analyses on ventromedial pre-

frontal cortex (vmPFC), motivated by the extensive human neu-

roimaging literature implicating vmPFC in episodic memory

across long timescales21–24 and by recent evidence of spacing

effects on neural similarity in rodent medial prefrontal cortex.19

To preview, we show spacing-related increases in vmPFC simi-

larity that (1) parallel and predict behavioral benefits of spacing

and (2) reflect the re-encoding of memories for prior encounters.

RESULTS

Spaced learning benefits long-term memory
Our primary prediction for behavior was that spacing between

the first two exposures (E1-E2 lag) would benefit subsequent

memory at the third exposure (E3 recognition). However, prior

behavioral work that has considered spacing at long timescales

(weeks or months) suggests that memory performance does not

monotonically improve as a function of spacing.4 Rather, as

spacing increases, memory benefits first increase but then even-

tually decrease.6,25 By some accounts, this non-monotonic

function reflects the fact that the benefits of spacing depend

on stimuli being recognized when they are re-encountered

(recognition at E2 in current study).10 From this perspective,

the non-monotonic relationship between spacing and memory

reflects two competing influences: (1) greater spacing is associ-

ated with better memory so long as stimuli are recognized at E2

but (2) the probability of recognizing a stimulus at E2 decreases

with spacing. In the current study, because memory was

measured at each encounter (E1, E2, E3), we were able to
2 Cell Reports 44, 115232, February 25, 2025
directly test whether the relationship between E1-E2 spacing

(hereafter referred to as spacing) and E3 recognition memory

(hereafter referred to as subsequent memory) depended on suc-

cessful recognition at E2.

An additional nuance to spacing effects is that the optimal

amount of spacing (the ‘‘peak’’ in the non-monotonic function)

has been shown to increase as a function of the retention interval

(RI; here, the RI is the E2-E3 lag).7,26,27 For the sake of compar-

ison with this line of work, we report spacing effects as a function

of RI for our initial behavioral analyses. However, because our

fMRI analyses focus on how E1-E2 spacing influences E1-E2

neural pattern similarity, the RI is not of direct relevance.

Using mixed-effects logistic regression models (see STAR

Methods for details), we first tested for relationships between

E1-E2 spacing and subsequent memory (hit versus miss at

E3), regardless of whether stimuli were successfully recognized

at E2 and regardless of behavioral responses at E1. Note that all

spacing analyses used the logarithm of the E1-E2 lag intervals

(STAR Methods). Based on prior studies, we predicted a non-

monotonic relationship between spacing and subsequent mem-

ory, which we tested for as quadratic trends in the logistic

regression models. For this first set of analyses, we generated

six different models corresponding to RIs ranging from

<10 min (shortest RI) to >3 months (longest RI).

Consistent with prior findings,7,28,29 we found no benefit to

spacing for the shortest RI (<10 min)—in fact, subsequent mem-

ory linearly decreased as a function of spacing, with no evidence

of a quadratic trend (see Table S1 for all statistics). However, for

all RIs >10 min (the other five models), we observed significant

quadratic trends (p < 0.001; Table S1). Specifically, as spacing

increased, subsequent memory first increased and then

decreased. Qualitatively, the optimal amount of spacing (the

peak in the quadratic function) increased as a function of the

RI (Figures 1D and S1), with the peaks ranging from a spacing

of �1 h to a spacing of several days. Most of the models also

had significant negative linear trends (Table S1).

We next conducted a separate mixed-effects logistic regres-

sion model restricted to stimuli correctly recognized at E2

(E2 = ‘‘old’’ response; hit) and correctly identified as new at E1

(E1 = ‘‘new’’ response; correct rejection); for this model, RI

was treated as a nuisance variable (covariate of no interest).

We also excluded stimuli for which the RI was <24 h because

stimuli that were successfully recognized at E2 and then tested

less than 24 h later were effectively at ceiling in terms of E3mem-

ory performance (average hit rate across participants = 0.97).

This model again yielded a significant quadratic trend (quadratic

term: b = �0.01, p < 0.001), but in striking contrast to the nega-

tive linear trends observed when ignoring E2 recognition

(Table S1), there was a robust, positive linear relationship be-

tween spacing and subsequent memory (b = 0.10, p < 0.001, lo-

gistic mixed-effects regression; Figure 1E). We also directly

compared subsequent memory performance (measured as d0)
for stimuli that had spacing >24 h versus spacing <24 h, again re-

stricting the analysis to stimuli that were correctly recognized at

E2. While performance was well above chance for both condi-

tions (<24 h: t7 = 9.21, p < 0.001; >24 h: t7 = 5.80, p < 0.001,

one-sample t tests; Figure 1F), subsequent memory perfor-

mance was significantly higher for >24 h spacing compared



Figure 1. Task and behavioral results

(A) Trial structure. During fMRI, participants performed a continuous recognition task in which thousands of natural scene images were presented up to three

times each with a pseudo-random delay interval between repetitions.

(B) Timeline of 7T fMRI scan sessions. Each of the eight participants completed 30–40 scan sessions over a 10 month window. The first scan session for each

participant corresponds to day 0.

(C) Smoothed histograms showing, for each participant, the relative frequencies of various E1-E2 spacing intervals (from seconds to months), shown on a log

scale.

(D) Relationships between spacing (E1-E2 lag) and subsequent memory (E3 recognition) for different retention intervals (RIs; E2-E3 lag) using data from all trials

(regardless of behavioral responses at E1 and E2). Lines reflect the fits of quadratic trends. Circles mark the peak in the fitted lines. See also Figure S1.

Qualitatively, the optimal amount of spacing increased as a function of RI.

(E) Subsequent memory (E3 recognition) improved as a function of E1-E2 spacing for images that were successfully recognized at E2 (b = 0.10, p < 0.001, logistic

mixed-effects regression).

(F) Subsequent memory performance (E3 recognition) for images with <24 h spacing and images with >24 h spacing (conditional on E2 recognition). Memory was

above chance for both groups (p < 0.001, one-sample t tests) but was significantly greater for images with >24 h spacing compared to <24 h spacing (t7 =�2.55,

p = 0.038, paired t test).

(G) The relationship between spacing and subsequent memory (E3 recognition) was significantly stronger for images successfully recognized at E2 (hit) compared

to images not recognized at E2 (miss) (hit: b = 0.10, p < 0.001; miss: p = 0.10, logistic mixed-effects regression; hit compared to miss: z = 7.89, p < 0.001, z-test).

Throughout the figure, error bars depict mean ± SEM, dots depict independent participants (n = 8), and *p < 0.05 and ***p < 0.001.
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to <24 h spacing (t7 = �2.55, p = 0.038, paired-samples t test;

Figure 1F).

Finally, we also ran a model that was conditionalized on E2 not

being recognized (E2 = miss; E1 = correct rejection). For this

model, we did not observe a significant linear relationship be-

tween spacing and subsequent memory (linear trend: p = 0.10,

logistic mixed-effects regression; Figure 1G). Moreover, the

linear relationship between spacing and subsequent memory

was significantly stronger when E2 was recognized versus not

recognized (z = 7.89, p < 0.001, z-test; Figure 1G). Thus, the ben-

efits of spaced learning were highly dependent on successful

recognition at E2.

Spaced learning strengthens stimulus-specific
representations in vmPFC
Having found behavioral evidence that spaced learning benefits

subsequent memory, we next assessed whether and how E1-E2

spacing influenced representational similarity across encounters

(E1-E2 fMRI pattern similarity). We did this using linear mixed-ef-

fects models in which pattern similarity was the dependent mea-

sure (STAR Methods). For these analyses, we did not exclude

any trials based on RI. Importantly, however, we did restrict an-

alyses to E1 and E2 trials that were each associated with correct

behavioral responses (E1 = correct rejection, E2 = hit) so that any

potential relationships between spacing and fMRI pattern simi-

larity were not confounded with behavioral responses. Addition-

ally, to ensure that pattern similarity did not reflect generic cogni-

tive processes, all pattern similarity analyses used a measure of

stimulus-specific similarity. That is, for each imagewe compared

‘‘within-image’’ pattern similarity (E1 and E2 = same stimulus) to

‘‘across-image’’ pattern similarity (E1 and E20 = different stimuli;

Figure 2A). Notably, E20 images were selected such that they

shared behavioral responses with and were presented in the

same sessions as E2 (thus approximately matching for spacing;

see STAR Methods for details). Stimulus-specific similarity

values greater than zero provide positive evidence for a repre-

sentation of a specific stimulus.

We focused our analyses on three regions of interest (ROIs): (1)

vmPFC, given our a priori prediction that vmPFC representations

would be influenced by spacing,19,21 (2) early visual cortex (EVC)

as a control region that would be sensitive to low-level visual in-

formation but would not be expected to contribute to or reflect

memory-related effects, and (3) motor cortex (M1) as a control

region that would not be expected to be sensitive to visual infor-

mation or memory-related effects.

Given the positive linear relationship between spacing and sub-

sequent memory that we observed in our behavioral analysis of

stimuli that were recognized at E2 (Figure 1E), here we tested

for similar linear relationships between spacing and (stimulus-spe-

cific) pattern similarity. Intuitively, itmight bepredicted that greater

spacing would be associated with lower pattern similarity (more

variability). Indeed, EVC exhibited a strong negative relationship

between spacing and pattern similarity (b = �0.002, p < 0.001,

linear mixed-effects regression; Figure 2E). In other words, EVC

similarity decreased as a function of spacing. In sharp contrast,

spacing was positively related to pattern similarity in vmPFC

(b = 0.001, p = 0.003, linear mixed-effects regression; Figure 2B).

That is, the vmPFC representation at E2 exhibited greater similar-
4 Cell Reports 44, 115232, February 25, 2025
ity to E1when the E1-E2 lag was longer. Binning stimuli with <24 h

versus >24 h spacing confirmed that vmPFC pattern similarity did

not differ fromzero for <24 h spacing (t7=1.71,p=0.13, one-sam-

ple t test) but was significantly greater than zero for >24 h spacing

(t7 = 3.23, p = 0.014, one-sample t test; Figure 2C). Thus, stimulus-

specific representations in vmPFC only emerged when spacing

was relatively high (>24 h). In contrast, EVC exhibited significant

pattern similarity for both <24 h spacing (t7 = 8.55, p < 0.001,

one-sample t test) and >24 h spacing (t7 = 7.99, p < 0.001, one-

sample t test). Thus, EVC did consistently code for stimulus-

specific information, even if these representations were weaker

with greater spacing. As expected, we did not observe any evi-

dence that pattern similarity in M1 was influenced by spacing

(p = 0.27, linear mixed-effects regression; Figure 2F), nor did M1

exhibit stimulus-specific representations for stimuli with <24 h

spacing (t7 = 0.61, p = 0.56, one-sample t test) or >24 h spacing

(t7 = �0.18, p = 0.86, one-sample t test). A linear mixed-effects

regression model confirmed a significant spacing 3 region inter-

action on stimulus-specific similarity (p < 0.001 for the interaction

term of spacing 3 region [vmPFC versus EVC versus M1] on

pattern similarity).

Importantly, we also confirmed that there was no significant

linear relationship between spacing and stimulus-specific

similarity in vmPFC when images were not recognized at E2

(p = 0.90, linear mixed-effects regression; Figures 2D and S2).

Moreover, the linear relationship between spacing and vmPFC

pattern similarity was significantly stronger when stimuli were

successfully recognized at E2 compared to when they were

not recognized at E2 (z = 2.07, p = 0.038, z-test). Together, these

results demonstrate that spaced learning strengthened stim-

ulus-specific representations in vmPFC but only when stimuli

were successfully recognized at E2. These data strongly parallel

our behavioral findings: that subsequent memory linearly

increased as a function of spacing when stimuli were success-

fully recognized at E2 (compare Figures 2B and 1E).

It is important to emphasize that conditionalizing the fMRI

analyses on successful recognition at E2 avoided potential con-

founds between spacing and behavioral responses at E2

(namely, as spacing increases, there is a lower probability that

E2 = hit). Moreover, establishing the relevance of E2 recognition

in spacing effects is also of theoretical importance. That said, we

also assessed stimulus-specific pattern similarity in vmPFC as a

function of spacing for all trials (regardless of behavioral

response at E2 or E1). This revealed a significant quadratic trend

(quadratic term: b = �0.001, p = 0.04; Figure S3) that was qual-

itatively similar to the non-monotonic relationship between

spacing and subsequentmemory that we observed in the behav-

ioral analyses that included all trials (Figure 1D). Thus, in multiple

respects, we observed a strong parallel between pattern similar-

ity in vmPFC and behavioral effects of spaced learning. Impor-

tantly, these parallels were particularly evident—or uniquely

observable—because we considered a very wide range of time-

scales (spacing from seconds to months).

Stimulus-specific similarity in vmPFC predicts
behavioral benefits of spacing
We have so far shown that spaced learning (E1-E2 spacing)

induced parallel increases in both subsequent memory



Figure 2. Spaced learning strengthens stimulus-specific representations in vmPFC

(A) Schematic illustration of stimulus-specific pattern similarity analysis. For each image, we computed pattern similarity scores (z-transformed Pearson cor-

relations) reflecting within-image similarity (E1 and E2 = same stimulus) and across-image similarity (E1 and E20 = different stimuli). Stimuli used to compute

the across-image similarity (E20 images) were associated with (1) the same behavioral responses as E2 images and (2) the same session as E2 images (E2

session = E20 session; see STAR Methods for details). For each image, we then computed the difference between within- and across-image similarity, which we

refer to as stimulus-specific pattern similarity. Under this difference measure, values greater than zero indicate positive evidence for a representation of a specific

stimulus in a given brain region.

(B) Stimulus-specific similarity in vmPFC increased as a function of spacing (b = 0.001, p = 0.003, linear mixed-effects regression).

(C) Stimulus-specific similarity values in vmPFC were significantly greater for stimuli with >24 h spacing compared to <24 h spacing (t7 =�2.82, p = 0.026, paired

t test). Stimulus-specific similarity in vmPFC did not differ from zero for stimuli with <24 h spacing (t7 = 1.71, p = 0.13, one-sample t test) but was significantly

greater than zero for >24 h spacing (t7 = 3.23, p = 0.014, one-sample t test). Dots depict individual participants (n = 8).

(D) The relationship between spacing and vmPFC pattern similarity was stronger (more positive) for images successfully recognized (hit) compared to images not

recognized (miss) at E2 (hit: b = 0.001, p = 0.003; miss: p = 0.90, linear mixed-effects regression; hit compared to miss: z = 2.07, p = 0.038, z-test).

(E) Stimulus-specific similarity in EVC decreased as a function of spacing (b = �0.002, p < 0.001, linear mixed-effects regression).

(F) Spacing had no effect on stimulus-specific similarity in M1 (p = 0.27, linear mixed-effects regression).

Throughout the figure, error bars depict mean ± SEM, and *p < 0.05, **p < 0.01, and ***p < 0.001.
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performance (E3 memory) and stimulus-specific pattern similar-

ity in vmPFC (E1-E2 similarity). We next sought to directly link

these behavioral and neural expressions at the level of individual
stimuli. To this end, we used logistic mixed-effects regression

models (STARMethods), with the dependent variable being sub-

sequent memory and independent variables of pattern similarity
Cell Reports 44, 115232, February 25, 2025 5



Figure 3. Stimulus-specific similarity in vmPFC predicts behavioral benefits of spacing

(A) The relationship between vmPFC similarity (E1-E2 similarity) and subsequent memory (E3 recognition) depended on (significantly interacted with) spacing

(b = 0.14, p < 0.001, logistic mixed-effects regression).

(B) The relationship between EVC similarity and subsequent memory did not depend on spacing (p = 0.64, logistic mixed-effects regression).

(C) The relationship between M1 similarity and subsequent memory did not depend on spacing (p = 0.73, logistic mixed-effects regression).

(D) Exploratory whole-brain analysis to identify cortical regions in which there was a significant interaction between E1-E2 similarity and spacing in predicting

subsequent memory. Z values refer to the Z scores calculated for the interaction term in a logistic mixed-effects regression model. Using an arbitrary threshold of

p < 0.001, the only region to show a significant interaction was a region in left vmPFC. LH, left hemisphere; RH, right hemisphere.

Throughout the figure, error bars depict mean ± SEM, ***p < 0.001, and 5 indicates spacing 3 pattern similarity interaction.
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and spacing. RI was again included as a covariate, and stimuli

with RI <24 h were excluded due to ceiling effects in subsequent

memory (see ‘‘spaced learning benefits long-term memory’’).

Primary analyses were restricted to stimuli that were success-

fully recognized at E2, as in the preceding section.

We first tested for a relationship between pattern similarity in

vmPFC and subsequent memory and then tested whether this

relationship interacted with spacing. The overall relationship be-

tween vmPFC pattern similarity and subsequent memory was

not significant (p = 0.12, logistic mixed-effects model). However,

adding an interaction term to the model revealed that the rela-

tionship between vmPFC similarity and subsequent memory

strongly depended on spacing (b = 0.14, p < 0.001, logistic

mixed-effects regression; Figure 3A). Specifically, the strength

of the relationship between vmPFC similarity and subsequent
6 Cell Reports 44, 115232, February 25, 2025
memory increased as a function of spacing. Follow-up tests

confirmed a robust positive relationship between vmPFC pattern

similarity and subsequent memory when spacing was >24 h

(b = 0.81, p = 0.002) but not when spacing was <24 h

(b = �0.21, p = 0.18). This complements the findings described

above (Figures 2B and 2C) showing that stimulus-specific repre-

sentations in vmPFC only emerged as spacing increased. There-

fore, the increase in stimulus-specific pattern similarity in vmPFC

that emerged with greater spacing was clearly linked to subse-

quent memory.

We next tested whether pattern similarity in the control ROIs—

EVC and M1—was related to subsequent memory. Neither re-

gion exhibited an overall relationship between pattern similarity

and subsequent memory (p > 0.26), nor did they exhibit an inter-

action with spacing (p > 0.64). Thus, despite the presence of



Figure 4. Stimulus-specific similarity in vmPFC reflects encoding-related processes

(A) There was a positive relationship between stimulus-specific E1-E2 pattern similarity in vmPFC and E2 activation in the encoding ROI (b = 0.007, p < 0.001,

linear mixed-effects regression).

(B) There was a negative relationship between pattern similarity in vmPFC and E2 activation in the retrieval ROI (b = �0.003, p = 0.04, linear mixed-effects

regression).

Throughout the figure, gray dashed lines depict independent participants (n = 8), color lines depict group-level relationships, and *p < 0.05 and ***p < 0.001.
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strong, stimulus-specific pattern similarity in EVC and a signifi-

cant change in this pattern similarity with spacing (Figure 2E),

EVC representationswere not predictive of subsequentmemory.

To further characterize the selectivity of the relationship, we con-

ducted an exploratory whole-brain analysis (including 360 ROIs

based on a cortical atlas30) to identify regions in which the

relationship between pattern similarity and subsequent memory

interacted with spacing. Using an arbitrary threshold of

p = 0.001, this analysis revealed a single region: left vmPFC (Fig-

ure 3D). However, as this exploratory analysis only included

cortical areas, we also directly interrogated several medial tem-

poral lobe (MTL) regions that are known to be involved in

episodic memory31,32: hippocampal subfields CA1 and CA2/3/

dentate gyrus, entorhinal cortex, perirhinal cortex, and parahip-

pocampal cortex. The relationship between pattern similarity

and subsequent memory did not interact with spacing for any

of the MTL regions (p > 0.05).

Finally, we tested whether the observed interaction in vmPFC

depended on images being successfully recognized at E2, as

with the behavioral spacing effects (Figure 1G) and the

spacing-dependent increase in vmPFC pattern similarity (Fig-

ure 2D). Indeed, the interaction in vmPFC was not significant

when the regression analysis was restricted to images that

were not recognized at E2 (p = 0.55 for interaction term of pattern

similarity 3 spacing on subsequent memory; logistic mixed-ef-

fects regression). Thus, at the behavioral and neural levels, the

effects of spaced learning depended on successful recognition

at E2.

Stimulus-specific similarity in vmPFC reflects encoding-
related processes
Thus far, our findings demonstrate a parallel and direct link be-

tween the behavioral benefits of spaced learning and spacing-

dependent increases in vmPFC pattern similarity. However,

these findings raise the obvious question: why does greater
spacing increase pattern similarity in vmPFC? The fact that in-

creases in vmPFC similarity depended on E2 recognition might

suggest that vmPFC tracked the successful retrieval of the orig-

inal encounter. However, retrieval strength should not increase

with greater spacing—it should decrease. Alternatively, many

theoretical accounts of spacing effects emphasize the impor-

tance of encoding processes when a stimulus is repeated.33,34

Moreover, to the extent that encoding and retrieval are opposing

memory states,35–39 decreases in retrieval strength may, in fact,

directly support stronger encoding processes. Thus, an inter-

esting possibility is that vmPFC similarity reflected the (re-)en-

coding of retrieved E1 representations. To address this idea,

we tested whether vmPFC similarity was correlated with activa-

tion in encoding-related brain regions (and, for comparison, with

activation in retrieval-related brain regions). Leveraging the

extensive neuroimaging literature on episodic memory encoding

and retrieval, we identified, from independent meta-analyses, an

ROI strongly associated with successful memory encoding and

an ROI strongly associated with successful recollection (memory

retrieval accompanied by contextual information) (STAR

Methods). We then tested, on a stimulus-by-stimulus basis,

whether univariate activation in these ROIs at E2 correlated

with the degree of stimulus-specific E1-E2 pattern similarity in

vmPFC. This was tested using linear mixed-effects regression

models with vmPFC similarity as the dependent variable and in-

dependent variables including univariate activation (either in the

encoding or retrieval ROI) and spacing. These analyses were

again restricted to stimuli associated with correct recognition

at E2.

Strikingly, higher E1-E2 pattern similarity in vmPFC was

predicted by greater E2 activation in the encoding-related ROI

(left inferior frontal gyrus; b = 0.006, p < 0.001, linear mixed-ef-

fects regression; Figure 4A) and by lower E2 activation in the

retrieval-related ROI (left angular gyrus; b = �0.003, p = 0.040,

linear mixed-effects regression; Figure 4B). Importantly,
Cell Reports 44, 115232, February 25, 2025 7
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because these models included spacing as a factor, these re-

sults indicate that univariate activation in the encoding and

retrieval ROIs explained variance in vmPFC pattern similarity

above and beyond that explained by spacing alone.

Exploratory, whole-brain analyses (Figure S4) did not reveal

additional ROIs (beyond left inferior frontal gyrus) in which activ-

ity positively correlated with vmPFC pattern similarity. However,

activity in several additional ROIs (beyond left angular gyrus) was

negatively correlated with vmPFC similarity. These regions

largely overlapped with the network of brain regions that has

been implicated in the recollection of episodic memories.40,41

Together, these results provide compelling evidence that, for

stimuli correctly recognized at E2, greater E1-E2 pattern similar-

ity in vmPFC was related to stronger engagement of encoding-

related processes.

DISCUSSION

Despite over a century of research related to spacing effects in

memory, there remains debate about the underlying explanation

for why spacing benefits memory. Amajor limitation to most cur-

rent theories of spacing effects is that they have not been directly

informed by—or constrained by—evidence from neural mea-

sures. Relevant neural evidence is limited, at least in part,

because it is difficult to continuously measure neural representa-

tions over the timescales across which spacing effects operate

(hours, days, weeks, or months). Here, we leveraged a unique

human fMRI dataset that allowed us tomeasure neural represen-

tations and behavioral effects of spacing at lags that ranged from

seconds to many months. By jointly considering these neural

and behavioral expressions—and using each measure to under-

stand the other—we were able to gain fundamental new insight

into why spacing benefits memory.

An important finding from behavioral studies of spacing ef-

fects is that the relationship between spacing and memory is

non-monotonic.4 Based on this finding, leading theories of

spacing effects involve two-factor accounts10,12,16,42—one fac-

tor to explain the ‘‘rise’’ in the spacing function (benefits of

spacing) and another factor to explain the ‘‘fall’’ in the spacing

function (costs of spacing). Here, we first replicated the classic

non-monotonic relationship between spacing and memory

when considering data from all trials (without conditionalizing

on E2 memory; Figure 1D). The peak in the observed functions

(the optimal amount of spacing) fell somewhere between 1 h

and 1 week, depending on the RI (Figures 1D and S1). We then

observed a qualitatively similar non-monotonic relationship be-

tween spacing and vmPFC pattern similarity (E1-E2 similarity;

Figure S3), again with a peak that fell between 1 h and 1 week.

At a broad level, these behavioral and fMRI data establish that

the current dataset was extremely well suited to studying

spacing effects and highlight the value of considering spacing ef-

fects over long timescales.

One of the most prominent explanations for the benefits of

spaced learning (the rise in the spacing function) is based on

the idea of encoding variability.9–11,15,25,43,44 By this account,

greater spacing between stimulus exposures leads to more var-

iable encoding of that stimulus (owing to greater change in the

encoding context). In turn, a more variably encoded stimulus
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has more points of access and, thereby, is more likely to be

remembered. Interestingly, we did find that, in EVC, stimulus-

specific representations became markedly less similar (more

variable) as a function of spacing (Figure 2E)—a finding that com-

plements other recent evidence.45–47 However, these EVC

effects did not parallel or predict the behavioral benefits of

spacing (Figure 3B). In contrast, we found that vmPFC similarity

increased (became less variable) with greater spacing—a finding

that is consistent with other recent evidence in humans18 and ro-

dents19 of spacing-related increases in neural similarity. While

greater spacing was therefore associated with both decreases

(EVC) and increases (vmPFC) in neural pattern similarity, one of

our key findings was that subsequent memory was uniquely pre-

dicted by greater pattern similarity in vmPFC—but only when

repetitions occurred at long timescales (Figure 3A).

The fact that vmPFC similarity only predicted subsequent

memory at long lags is interesting and suggests a mechanism

that may only be engaged (or is preferentially engaged) when

learning is spaced. Of course, this also raises the question of

what other mechanism/brain region might support subsequent

memory at shorter timescales. Notably, our whole-brain analysis

did not reveal any brain regions for which the relationship be-

tween pattern similarity and subsequent memory was signifi-

cantly stronger at short lags than long lags (at least using our

threshold of p < 0.001; Figure 3D). However, other studies

have found that, in regions other than vmPFC, neural similarity

across short lags is positively related to memory.48–50 While

not a claim that is directly supported by our findings, it is possible

that there are dissociable predictors of subsequent memory

when stimulus repetitions occur at short versus long lags.

Why would vmPFC similarity (or similarity in any brain region)

increase as a function of spacing? One factor that was clearly

relevant to the increase in vmPFC similarity was whether events

were recognized when they were re-encountered (i.e., at E2).

Indeed, we observed a strong linear increase in vmPFC similarity

when analyses were conditionalized on successful recognition

at E2 (Figures 2B–2D) but no evidence of a linear increase in

similarity when analyses were conditionalized on failed recogni-

tion at E2 (Figure 2D). Importantly, this dissociation parallels

what we observed in behavior (Figures 1E–1G). Thus, our data

strongly support the prominent idea that spacing effects depend

on study-phase retrieval.13,14 That said, while study-phase

retrieval was necessary for the benefits of spacing to occur,

study-phase retrieval does not, on its own, explain why greater

spacing would produce better memory—in fact, the probability

or strength of study-phase retrieval should monotonically

decrease with greater spacing.

Motivated by theoretical perspectives arguing that encoding

and retrieval are opposing neural states,36,51 we reasoned that

decreases in memory retrieval strength might be beneficial pre-

cisely because they allow for greater memory encoding—or,

more specifically, re-encoding of a retrieved representation.

We tested this by correlating, in a stimulus-by-stimulus manner,

E1-E2 similarity in vmPFC with the degree of E2 univariate acti-

vation in ROIs that have independently been firmly established

as being involved in memory encoding and memory retrieval.

Indeed, we found that vmPFC similarity was not only positively

correlated with activation in the encoding region but also
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negatively correlated with activation in the retrieval region. Thus,

even though vmPFC similarity critically depended on successful

retrieval of the original encounter (Figure 2D), vmPFC similarity

was correlated with a putative marker of successful encoding.

While this combination may seem contradictory, this is precisely

the type of balance between opposing influences that is required

to explain non-monotonic effects of spacing (in the brain and

behavior). Specifically, our findings suggest that memory is likely

to benefit when the original experience is successfully retrieved

and re-encoded. On their own, however, neither of these compo-

nents is sufficient to explain the benefits of spacing. At very short

lags, retrieval may be ‘‘too strong,’’ thereby preventing success-

ful re-encoding—an idea that is compatible with deficient pro-

cessing accounts of spacing effects.16 At very long lags, even

though an encoding state may be strong, failure to retrieve the

original experience is more likely, thereby preventing re-encod-

ing. Thus, intermediate lags may be optimal because they allow

for a balance between successful retrieval of the original expo-

sure combined with re-encoding of the retrieved memory.

While a re-encoding account provides a parsimonious expla-

nation for our findings—and of spacing effects more gener-

ally—a recent computational model suggests a slightly different

interpretation that also aligns well with our findings. Namely, Ant-

ony et al. argue that variability triggers the abstraction of similar-

ities across stimulus exposures.26 That is, when a stimulus is re-

encountered after a relatively long delay, the encoding context is

more likely to be different, and this difference triggers error-

driven learning that strengthens common elements across en-

counters at the expense of unique elements (i.e., abstraction of

similarities). This account is consistent with our findings in that

it explains spacing effects in terms of increased similarity of neu-

ral representations when events are spaced across time. How-

ever, an abstraction account does make an important prediction

about memory for contextual information—including memory for

when in time each encounter occurred (temporal memory). Spe-

cifically, an abstraction account predicts that, with relatively long

spacing, retrieval of the original encounter should actively

weaken temporal memory for individual encounters. Interest-

ingly—and consistent with this account—the benefits of spaced

learning for recognition memory that we report in the current

manuscript were not evident when considering temporal mem-

ory.50 That said, the relationships between spacing, contextual

memory, and neural similarity have not been well characterized.

Addressing these relationships in future research will help refine

theoretical accounts of spacing effects.

The fact that our findings specifically implicate vmPFC in repre-

senting event similarity over time is notable in light of the extensive

literature demonstrating vmPFC involvement in the integration of

information across encoding events52,53 and in the formation of

schemas.54,55 In particular, vmPFC is thought to support the en-

coding of new events into existing schematic representa-

tions53,54—a function that resembles the re-encoding account

proposed above. Other studies have also implicated vmPFC in

the retrieval of remotememories21–24,56,57 andmemory consolida-

tion.24,58,59 Notably, some of this evidence specifically relates to

vmPFC activation increasing as a function of the age of a retrieved

memories58,59—with the idea being that memories ‘‘move’’ to (or

emerge within) vmPFC over time. In contrast, we show that when
a stimulus is re-encountered after a relatively long lag, this can

actually increase the similarity to the original experience. Thus,

our findings are not readily consistent with an account where

vmPFC representations only emerge over long timescales. That

said, other theories of consolidation allow for the possibility that

vmPFC representations are formed immediately, but the reliance

on these representations changes over time.24

In summary, by considering learning events that were spaced

from seconds to many months apart, we show that the behav-

ioral benefits of spaced learning are strongly paralleled with—

and predicted by—the similarity with which vmPFC represented

stimuli across exposures. Moreover, through a number of com-

plementary analyses, we show that the benefits of spaced

learning—in brain and behavior—reflect a balance between

retrieval and encoding processes. Namely, whereas the retrieval

of an original encounter is a necessary condition for the benefits

of spaced learning, it is also important that the retrieved informa-

tion is re-encoded. From this perspective, non-monotonic rela-

tionships between spacing and memory can be explained by

trade-offs between these two computations.

Limitations of the study
One of the primary advantages of the dataset used here is that it

involved dense sampling of participants over many months, crit-

ically enabling analysis of spacing effects over long timescales.

However, a corresponding limitation is that the number of partic-

ipants (n = 8) was relatively small for an fMRI study. Relatedly,

another limitation is that the experimental protocol was not spe-

cifically designed to test for spacing effects. A future study spe-

cifically designed to test for spacing effects might sample less

densely (e.g., with amaximum lag of 1–2months) while including

a larger total number of participants.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Eight participants from the University of Minnesota community participated in the study (two self-identified males and six self-iden-

tified females; age range 19–32 years). All participants were right-handed with no known cognitive deficits nor color blindness and

with normal or corrected-to-normal vision. Participants were naive to the design of the experiment andwere not involved in the design

or planning of the study. Informed written consent was obtained from all participants before the start of the study, and the experi-

mental protocol was approved by the University of Minnesota Institutional Review Board.

METHOD DETAILS

Overview
This study reports findings using the Natural Scenes Dataset (NSD; http://naturalscenesdataset.org). The NSD is a large-scale fMRI

dataset in which participants performed a continuous recognition task on thousands of color natural scenes over the course of 30–40

high-resolution fMRI (7T) scan sessions. The results in this study are based on data from all of these sessions, from all participants

who took part in the NSD study. For a detailed description of the dataset, includingmethods involved in preprocessing the fMRI data,

please see the original data publication.20 Below we outline the specific methods relevant to the current study.

Natural scenes dataset
Experimental design and procedure

A detailed description of the experimental design has been reported in the original data publication.20 Briefly, participants performed

a continuous recognition task in which they reported whether the current image had been seen at any previous point in the exper-

iment (‘old’) or if they had not encountered it before (‘new’). For each participant, the experiment was split across 40 scan sessions in

which 10,000 distinct color natural scenes would be presented three times spaced pseudo-randomly over the course of the entire

experiment. Each scanning session consisted of 12 runs (750 trials per session). Each trial lasted 4 s and consisted of the presen-

tation of an image for 3 s and a following 1-s gap (Figure 1A). Participants were able to respond during the entire 4-s period and were

also permitted to make multiple responses per trial in cases where they changed their mind. As trials with multiple responses poten-

tially captured more complex cognitive operations related to decision making, we opted to exclude those trials from all analyses.

Participants completed up to 40 scan sessions each and were scanned approximately once a week over the course of 10 months

(Figure 1B; the first scan session for each participant corresponds to Day 0). Four of the participants completed the full set of 40 NSD

scan sessions. Due to constraints on participant and scanner availability, two participants completed 30 sessions and two partici-

pants completed 32 sessions. Accordingly, each participant viewed a total of 9,209-10,000 unique images across 22,500-30,000

trials.

Stimuli

Images used in NSDwere taken from theMicrosoft CommonObjects in Context (COCO) database.60 A total of 73,000 unique images

were prepared with the intention that each participant would be exposed to 10,000 distinct images (9,000 unique images and 1,000

shared images across participants) three times each across the 40 scan sessions. Image exposures were pseudo-randomly distrib-

uted across sessions over the course of almost a year. The presentation structure was determined in advance and fixed across par-

ticipants so that difficulty of the recognition task was roughly similar across participants. Distribution of image presentations was

controlled to ensure that both short-term and long-term re-exposures were probed. To provide a sense of the overall experimental

design, the mean number of distinct images shown once, twice, and all three times within a typical session is 437, 106, and 34,

respectively.

As the current study focused on how the spacing between the first two exposures to an image influenced recognition at the third

exposure, we only considered images that were presented all three times across the entire experiment. Here, we labeled each
12 Cell Reports 44, 115232, February 25, 2025
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exposure based on its presentation order (i.e., the first exposure is E1, the second exposure is E2, and the third exposure is E3). Of

critical interest, the spacing between the first two exposures (E1-E2 lag) ranged from 4 s to 302 days (see Figure 1C for distribution of

the E1-E2 spacing for each participant).

fMRI data acquisition and preprocessing

MRI data was collected at the Center for Magnetic Resonance Research at the University of Minnesota. Imaging was performed on a

7T Siemens Magnetom passively-shielded scanner with a single-channel-transmit, 32-channel-receive RF head coil. Functional im-

ages were acquired using whole-brain gradient-echo echo-planar imaging (EPI) at 1.8-mm resolution and 1.6-s repetition time.

Details of the preprocessing of anatomical and functional data are provided in the original data publication.20 Briefly, functional

data were preprocessed by performing one temporal resampling to correct for slice time differences and one spatial resampling

to correct for headmotion within and across scan sessions, EPI distortion, and gradient non-linearities. Informed by the original pub-

lication, the current study used the 1.0-mm volume preparation of the functional time-series data and ‘‘version 2’’ of the NSD single-

trial betas.

Data analysis

Based on the observation that stimuli that were successfully recognized at E2 and then tested less than 24 h later (E2-E3 lag <24 h)

were effectively at ceiling in terms of E3 memory performance (average hit rate across participants: 0.97), all analyses in the current

study related to E3 memory only excluded stimuli for which the E2-E3 lag was >24 h.

Behavioral data analyses

We first separately tested for relationships between spacing (E1-E2 lag) and subsequent memory (E3 memory) for different retention

intervals (RI; E2-E3 lag), regardless of whether stimuli were successfully recognized at E2 (and regardless of behavioral responses at

E1). To do so, we generated six different models corresponding to RIs ranging from <10min (shortest retention interval) to >3months

(longest retention interval). For each RI, we performed the mixed-effects logistic regression analyses that predicted subsequent

memory from spacing using both linear and quadratic fits. Specifically, we used a mixed-effects logistic regression model that pre-

dicted subsequent memory (hit = ‘old’ response, miss = ‘new’ response) from spacing while including (controlling for) several addi-

tional factors. These added factors of no interest included the lag between the beginning of the first trial in the experiment and the first

exposure (i.e., E1 onset), the retention interval (i.e., E2-E3 lag), and false alarm rates of sessions in which each exposure occurred. All

models were constructed with random intercepts for each participant. Because memory is observed to abide by an exponential rule

rather than linear time,61 all temporal lag information (i.e., E1 onset, E1-E2 lag, and E2-E3 lag) was quantified by expressing time in-

tervals in seconds and transforming these intervals with the natural logarithm.

To directly test whether the relationship between spacing and subsequent memory (and fMRI pattern similarity) depended on suc-

cessful recognition at E2, we first ran analyses restricted to stimuli correctly recognized at E2 (E2 = hit) and correctly rejected at E1

(E1 = ‘new’ response; correct rejection) and then ran analyses conditionalized on E2 not being successful recognition at E2 (E2 =

miss; E1 = correct rejection).

Regions of interest (ROIs) definition
To determine whether spacing modulated stimulus-specific representations, region of interest (ROI) analyses were performed for

several brain regions. All cortical ROIs were selected from the surface-based Human Connectome Project multimodal parcellation

version 1.0 (HCP-MMP1.0) atlas of human cortical areas.30 Motivated by prior evidence implicating ventromedial prefrontal cortex

(vmPFC) in episodic memory across long timescales21–24 and by recent evidence of spacing effects on neural similarity in the rodent

medial prefrontal cortex,19 we selected a bilateral vmPFC ROI (HCP-MMP1.0 label: 10r, 10v; a total of 2325 voxels were used in the

bilateral vmPFC mask; Figure S5). As control ROIs, we also selected bilateral early visual cortex (EVC; HCP-MMP1.0 label: V1; 8892

voxels) and bilateral motor cortex (M1; HCP-MMP1.0 label: 4; 8171 voxels). An additional exploratory analysis was conducted

throughout the whole brain using all parcels available in the HCP-MMP atlas. Based on the established role of the medial temporal

lobe (MTL) in humanmemory, we also repeated certain analyses in a set of subregions there. TheseMTL ROIs included bilateral CA1,

CA2/3/dentate gyrus, entorhinal cortex, perirhinal cortex, and parahippocampal cortex, all manually drawn on the high-resolution T2

images obtained for each participant.

To probe specific hypotheses concerning encoding/retrieval-related processes, a priori ROIs were chosen based on past work.

Specifically, an ROI representative of encoding-related effects was identified using the global peak coordinates supporting encoding

success from an independent meta-analysis on the subsequent memory effect.62 We then projected the coordinates to the HCP-

MMP atlas and used the delimiting parcel as the encoding ROI. Similarly, for an ROI representative of retrieval-related effects, we

used the peak coordinates supporting recollection success from another independent meta-analysis of episodic memory retrieval63

and identified the delimiting parcel in the HCP-MMP atlas as the retrieval ROI.

Pattern similarity analyses
Pattern similarity was calculated as the Pearson correlation between activity patterns evoked during different image exposures for

each ROI. Correlations were z-transformed (Fisher’s z) before further analyses were performed. To avoid potential contamination

from BOLD signal autocorrelation, all pattern similarity analyses were performed by correlating activity patterns for stimuli across

run (i.e., correlations were never performed within the same scanning run).
Cell Reports 44, 115232, February 25, 2025 13



Article
ll

OPEN ACCESS
For our primary analyses related to pattern similarity between E1 and E2, of critical interest was the stimulus-specific pattern sim-

ilarity. Specifically, for each image (‘target’), we compared ‘within-image’ pattern similarity (E1 and E2 = same stimulus) to ‘across-

image’ pattern similarity (E1 and E2’ = different stimuli; Figure 2A). The E20 images used to compute across-image similarity were

chosen from the same set of sessions (but different scanning runs) as the target image’s E1 and E2, thus controlling for differences

in spacing. Further, E20 images were chosen such that they had the same memory outcomes at the first two exposures as the target

image. For target images with multiple possible E20 images based on the criteria above, the median value of the across-image sim-

ilarity scores was used. The across-image similarity was then subtracted fromwithin-image similarity to yield a stimulus-specific sim-

ilarity measure of E1-E2 similarity for each image.

Unless indicated otherwise, our main fMRI analyses were restricted to stimuli that were associated with correct behavioral re-

sponses at both E1 and E2 (i.e., E1 = ‘new’ responses, E2 = ‘old’ responses) so that any potential relationships between spacing

and neural pattern similarity were not confounded with behavioral responses.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details are specified in the corresponding figure legends. In general, behavioral and fMRI data were analyzed using a

combination of paired t tests and mixed-effects regression models. Relationships between spacing, stimulus-specific pattern sim-

ilarity and subsequent memory were tested with mixed-effects regression models. For all mixed-effects regression models, we used

the participant as a random effect and other variables as fixed effects. All t-tests were two-tailed. A threshold of p < 0.05 was used to

establish statistical significance for all analyses unless otherwise specified. fMRI analyses were corrected for multiple comparisons

when applicable.
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